Руководство пользователя Рекуперация энергии

Издание 00

Введение

В данных инструкциях рассматриваются основные компоненты и принцип работы нового поколения устройств рекуперации энергии, в настоящее время используемых в качестве дополнительного элемента винтового компрессора с впрыском масла.

Для удобства термины «рекуперация энергии» и «устройство рекуперации энергии» будут иногда заменены в тексте аббревиатурами – «ER» и «ER-устройство».

Содержание

Введение	Ошибка! Закладка не определена.
1 Рекуперация энергии (ER)	4
1.1 Описание	
1.2 Компоненты	
1.3 Устройство рекуперации энергии (ЕR-устройство)	
1.3.1 Диапазон 30 45 кВт	
1.3.2 Диапазон 55 110 кВт	
1.4 Механические доработки и монтаж	
1.4.1 Диапазон 30 45 кВт	
1.4.2 Диапазон 55 110 кВт	
1.5 Электрические доработки и монтаж	
1.5.1 Диапазон 30 110 кВт	
1.6 Примечания	Ошиока: Закладка не определена.
2 Применение системы рекуперации энергии	
2.1 Общие положения	
2.2 Низкий подъем температуры / высокий расход воды (замкнут	
2.3 Высокий подъем температуры / низкий расход воды (открыти	
2.4 Расход оборотной воды	
2.5 Требования к оборотной воде для замкнутых водяных контур 2.6 Требования к оборотной воде для открытых водяных контуро	
	•
3 Эксплуатация	
3.1 Термостатические перепускные клапаны	
3.1.1 Перепускной клапан теплообменника (ЕR-устройства) с ру	укояткой Ошибка! Закладка не
определена. 3.1.2 Перепускной клапан главного охлалителя масла	O
3.1.2 Перепускной клапан главного охладителя масла	
3.3 Система рекуперации энергии включена	
3.2.1 Запуск компрессора	
3.2.2 Максимальная рекуперация энергии	
3.2.3 Низкое потребление восстановленной энергии	
3.2.4 Слишком высокий расход оборотной воды или слишком н	
Ошибка! Закладка не определена.	
3.3 Система рекуперации энергии выключена	
3.4 Включение / выключение системы рекуперации энергии	
3.4.1 Компрессоры с постоянной скоростью вращения:	
3.4.2 Компрессоры с частотно-регулируемым приводом (ЧРП):	
3.5 Остановка ER-устройства на длительный период	Ошиока: Закладка не определена.
4 Техническое обслуживание	
4.1 Компрессорное масло	
4.2 Термостатические перепускные клапаны	
4.3 Теплообменник	Ошибка! Закладка не определена.
5 Параметры устройства рекуперации энергии	Ошибка! Закладка не определена.
5.1 Исходные условия	
5.2 Эффективное рабочее давление	Ошибка! Закладка не определена.
5.3 Максимальное рабочее давление	Ошибка! Закладка не определена.
5.4 Считывание уставок	
5.5 Изменение уставок	
5.6 Повторно используемая энергия	
5.7 Данные для систем с низким подъемом температуры / высоки	им расходом воды . Ошибка! Закладка
не определена.	O
5.6.1 Диапазон 30 45 кВт	
5.6.2 Диапазон 55 110 кВт 5.7 Данные для систем с высоким подъемом температуры / низкі	
5.7 Данные для систем с высоким подъемом температуры / низкі 5.7.1 Диапазон 30 45 кВт	
5.7.1 Диапазон 50 45 кВт	
5.8 Таблица перевода единиц СИ в единицы измерения США и Е	
определена.	r

1 Рекуперация энергии (ER)

1.1 Описание

Энергия, требуемая для любого процесса сжатия, почти полностью превращается в тепло. У винтовых компрессоров с впрыском масла основная часть этой теплоты сжатия рассеивается через масляную систему. Система рекуперации энергии разработана, чтобы использовать большую часть вышеупомянутого тепла для получения теплой/ горячей воды без снижения рабочих параметров компрессора. Воду можно использовать для других установок.

1.2 Компоненты

Система рекуперации энергии полностью встроена в основное устройство и содержит следующие основные компоненты:

- масляно-водяной теплообменник, полностью изготовленный из нержавеющей стали
- термостатический перепускной клапан с двухпозиционной рукояткой (вкл./выкл.)
- температурные датчики на входе и выходе воды
- комплект болтов, труб, шланговых соединений и т.д.
- также в систему рекуперации энергии входят термостаты для перепускного клапана устройства рекуперации энергии и главного перепускного клапана главных охладителей
- клапан сброса давления с уставкой давления 10 бар

1.3 Устройство рекуперации энергии (ER-устройство)

1.3.1 Диапазон 30-45 кВт

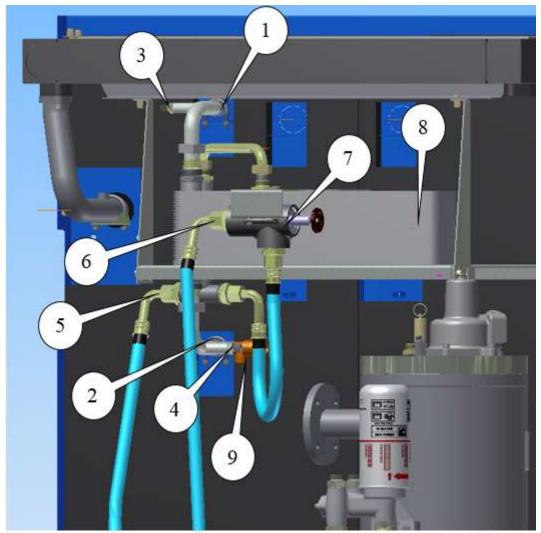


Рис. 1: Устройство рекуперации энергии, диапазон 30-45 кВт

Позиции на Рис. 1	Наименование
1	Патрубок для подачи воды
2	Патрубок для выпуска воды
3	Датчик температуры, впуск воды
4	Датчик температуры, выпуск воды
5	Патрубок для подачи масла
6	Патрубок для выпуска масла
7	1 ^й перепускной клапан с термостатом и рукояткой для ручного включения/выключения ER-устройства
8	Теплообменник (ER-устройства)
9	Клапан сброса давления

Функции основных компонентов будут рассмотрены далее в инструкциях.

Подробная информация о сборке ER-устройства – см. руководство пользователя:

9820 6705 50 (сборка и установка ER-устройства, диапазон 30-45 кВт)

1.3.2 Диапазон 55-110 кВт

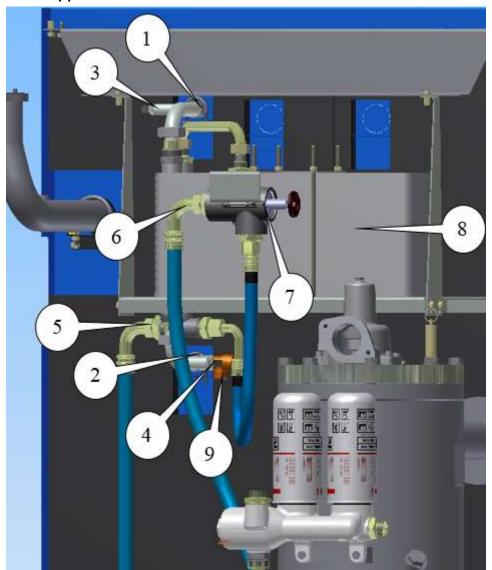


Рис. 2: Устройство рекуперации энергии, диапазон 55-110 кВт

Позиции на Рис. 2	Наименование
1	Патрубок для подачи воды
2	Патрубок для выпуска воды
3	Датчик температуры, впуск воды
4	Датчик температуры, выпуск воды
5	Патрубок для подачи масла
6	Патрубок для выпуска масла
7	1 ^й перепускной клапан с термостатом и рукояткой для
7	ручного включения/выключения ЕR-устройства
8	Теплообменник (ER-устройства)
9	Клапан сброса давления

Функции основных компонентов будут рассмотрены далее в инструкциях. Подробная информация о сборке ER-устройства – см. руководства пользователя: 9820 6705 54, 9820 6705 58 и 9820 7100 15.

1.4 Механические модификации и монтаж

При работе с устройством соблюдайте меры безопасности, описанные в инструкциях к компрессору.

1.4.1 Диапазон 30-45 кВт

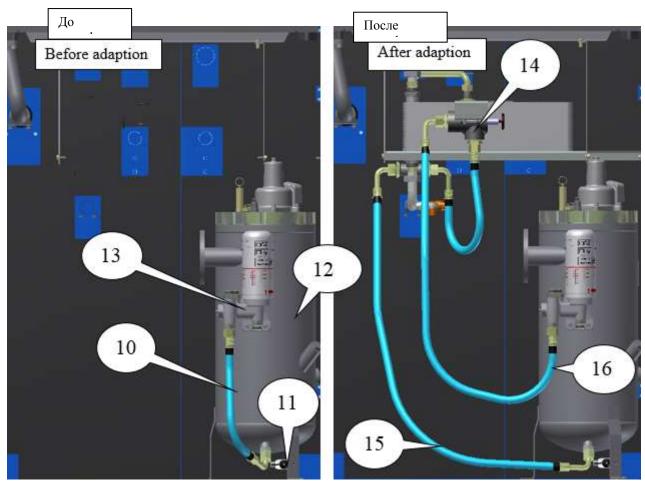


Рис. 3: Модификация для установки рекуперации энергии, диапазон 30-45 кВт

Позиции на Рис. 3	Наименование
10	Масляный шланг (от сосуда к трубе масляного фильтра на
	впуске масла)
11	Дренаж масла
12	Сосуд масляного сепаратора
13	Масляный фильтр с 2 ^{ым} перепускным клапаном главных
	охладителей
14	1 ^й перепускной клапан с термостатом и рукояткой для ручного
14	включения/выключения ER-устройства
15	Масляный шланг (от сосуда к патрубку для подачи масла ER-
	устройства)
16	Масляный шланг (от патрубка для выпуска масла ER-
	устройства к трубе масляного фильтра)

Руководство пользователя

Рекуперация энергии

1.4.2 Диапазон 55-110 кВт

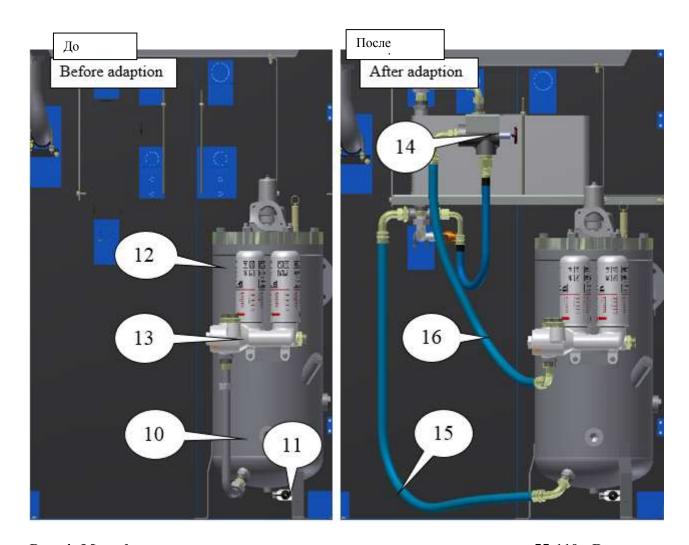
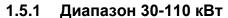


Рис. 4: Модификация для установки рекуперации энергии, диапазон 55-110 кВт

Позиции на Рис. 4	Наименование
10	Масляная труба (от сосуда к трубе масляного фильтра на
10	впуске масла)
11	Дренаж масла
12	Сосуд масляного сепаратора
13	Масляный фильтр с 2 на перепускным клапаном главных
	охладителей
14	1 st перепускной клапан с термостатом и рукояткой для ручного
14	включения/выключения ER-устройства
15	Масляный шланг (от сосуда к патрубку для подачи масла ER-
	устройства)
16	Масляный шланг (от патрубка для выпуска масла ER-
10	устройства к трубе масляного фильтра)

Номера позиций – см. Рис. 1, 2, 3 и 4.

Чтобы установить устройство рекуперации энергии в масляный контур компрессоров, необходимо снять масляный шланг (10) между сосудом масляного сепаратора (12) и масляным фильтром (13). Этот шланг НЕ БУДЕТ использоваться повторно, и его можно утилизировать.


При установке ER-устройства выход сосуда масляного сепаратора (12) соединяют с патрубком для подачи масла (5) ER-устройства с помощью шланга (15). Шланг (16) от патрубка для выпуска масла (6) ER-устройства необходимо подключить к патрубку на дне масляного фильтра (13), к которому был присоединен исходный масляный шланг (10).

Подробная информация об установке содержится в следующих руководствах пользователя:

- 9820 6705 50 (сборка и установка ER-устройства, 30-45 кВт)
- 9820 6705 54 (сборка и установка ER-устройства, 55-75 кВт)
- 9820 6705 58 (сборка и установка ER-устройства, 75-90 кВт)
- 9820 7100 15 (сборка и установка ER-устройства, 110 кВт)

1.5 Модификации электрической системы и монтаж

Подробная информация о монтаже электрической части датчиков температуры для вспомогательного устройства рекуперации энергии — см. схему сервисного обслуживания, поставляемую с главным компрессором.

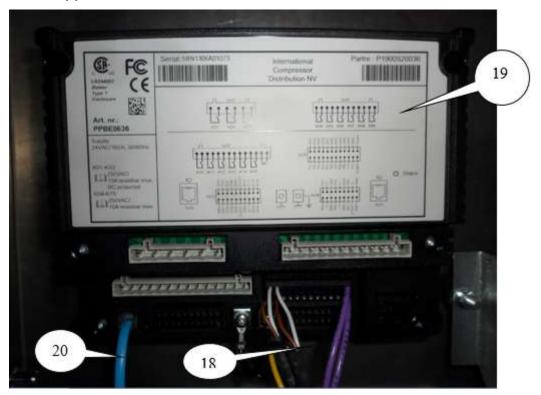


Рис. 5: 1.5 Модификации электрической части устройства рекуперации энергии

Позиции на Рис. 5	Наименование
18	Кабели датчика температуры
19	Модуль расширения
20	Кабель связи

Для справок см. Рис. 2, 3 и 7.

Два датчика температуры (3 и 4) соединяют кабелями (18) с модулем расширения (19) в электрошкафу компрессора. Модуль расширения подключен к модулю главного контроллера (Elektronikon) с помощью кабеля связи (20).

Графический контроллер и модуль расширения необходимы для визуализации показаний датчиков температуры воды. В контроллере Elektronikon необходимо включить функцию рекуперации энергии.

Подробная информация о монтаже электрической части модуля расширения – см. схему сервисного обслуживания, поставляемую с главным компрессором.

1.6 Примечания

Основные компоненты собраны на заводе в компактный узел (ER-устройство), установленный внутри корпуса компрессора.

В заводской версии ER-устройство уже установлено (см. разделы 1.4 и 1.5).

Конечно, в версии ER-устройства, рассчитанной для продажи, вышеупомянутые доработки механической и электрической части конструкции необходимо выполнить до встраивания ER-устройства в компрессор.

Рекомендуется заменять масляные фильтры при установке устройства рекуперации энергии.

2 Применение системы рекуперации энергии

2.1 Общие положения

Система рекуперации энергии может работать с низким подъемом температуры/ высоким расходом воды или с высоким подъемом температуры/ низким расходом воды.

2.2 Низкий подъем температуры/ высокий расход воды (замкнутые системы регенерации воды)

В данном случае присутствует разница температур между водой в системе рекуперации энергии и маслом компрессора. Поэтому для максимальной рекуперации энергии необходим высокий расход воды.

Пример: нагретую воду используют для поддержания сравнительно высокой температуры другой среды в замкнутом контуре, например, в системе центрального отопления.

2.3 Высокий подъем температуры/ низкий расход воды (открытые системы регенерации воды) ¹

В данном случае достигается значительный подъем температуры воды в системе рекуперации энергии, что, соответственно, приводит к низкому расходу.

Пример: открытый контур, где холодная вода из водопроводной сети нагревается системой рекуперации энергии для использования на предприятии, например, в качестве подогретой подпиточной воды для котла.

2.4 Расход оборотной воды

Номера позиций - см. Рис. 1, 2 и 3.

Оборотная вода поступает в ER-устройство через *патрубок для подачи воды (1)*. В *теплообменнике (8)* теплота сжатия передается от компрессорного масла к воде. Вода выходит из *теплообменника (8)* через *патрубок для выпуска воды (2)*.

_

¹ Снижение расхода воды для получения высоких температур на выходе воды приведет к повышению температуры впрыскиваемого масла до 75°С (макс.). При такой температуре 2^{ой} перепускной клапан (Рис. 3 и 4 - поз. 14) обеспечит, чтобы температура впрыскиваемого масла не поднималась выше 75°С (см. раздел 3). Повышение температуры впрыскиваемого масла ухудшает рабочие параметры компрессора. Поэтому при работе в режиме «высокий подъем температуры/ низкий расход воды» необходимо применять термостат для тропического климата (опция).

2.5 Требования к оборотной воде для замкнутых водяных контуров

Когда система рекуперации энергии встроена в замкнутый контур оборотной воды, использование мягкой или даже деминерализованной воды является экономически выгодным и устраняет проблемы, связанные с отложениями водного камня. Хотя теплообменник ER-устройства полностью изготовлен из нержавеющей стали, водяной контур, соединенный с компрессором, может требовать применения ингибиторов коррозии. Чтобы свести к минимуму проблемы, вызванные плохим качеством воды, изучите таблицу ниже. При любых сомнениях обратитесь в отдел сервисного обслуживания.

Чтобы предотвратить замерзание, добавляйте в воду антифриз (например, этиленгликоль) пропорционально ожидаемым температурам. Имейте в виду, что добавление этиленгликоля в охлаждающую воду снижает теплопроводность охлаждающей среды. Теплопроводность этиленгликоля составляет всего 61,2% теплопроводности воды. Поэтому, чтобы обеспечить такие же параметры охлаждения, расход охлаждающей среды необходимо увеличить (пример: если охлаждающая среда содержит х% гликоля в 100-x% воды, расход охлаждающей среды необходимо увеличить на $38.8 \cdot x/(100-0.388 \cdot x)$ % в сравнении со 100% воды).

2.6 Требования к оборотной воде для открытых водяных контуров

Для открытых контуров воды без рециркуляции основные проблемы обычно связаны с осадком, коррозией и ростом микроорганизмов. Чтобы свести к минимуму эти проблемы, вода должна соответствовать ряду требований. При любых сомнениях обратитесь в отдел сервисного обслуживания.

Рекомендуемая среда (мг/л)	Замкнутый водяной	Открытый водяной
гекомендуемая среда (мілі)	контур	контур
Хлор (Cl ⁻)	< 600	< 150
Сульфаты (SO4 ⁻)	< 400	< 250
Общее количество твердых веществ	< 3000	< 750
Взвешенные твердые вещества (как SiO ₂)	< 10	< 10
Свободный хлор (СІ2)	< 4	< 2
Аммиак (NH ₄ +)	< 0.5	< 0.5
Медь	< 0.5	< 0.5
Железо	< 0.2	< 0.2
Марганец	< 0.1	<0.1
Кислород	< 3	< 3
Карбонатная жесткость (как СаСО₃)	50-1000	50-500
Органические вещества (потребление KMnO ₄)	< 25	< 10

3 Эксплуатация

3.1 Термостатические перепускные клапаны

Номера позиций - см. Рис. 1, 2, 3, 4 и 6.

Расход компрессорного масла регулируют два термостатических перепускных клапана, обеспечивая надежную работу компрессора и оптимальную рекуперацию энергии.

Первый перепускной клапан (7) встроен в ER-устройство и управляет работой масляного теплообменника (8) ER-устройства. Второй перепускной клапан встроен в корпус масляного фильтра (13) и управляет работой главного масляного охладителя (21) компрессора. У обоих перепускных клапанов предусмотрены вставки (термостаты), установленные в корпусе. Первый перепускной клапан ER-устройства имеет отдельный корпус. Корпус второго перепускного клапана компрессора объединен с масляным фильтром (22).

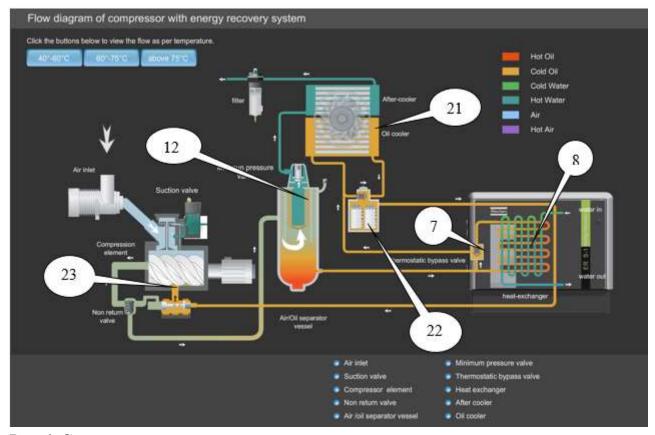


Рис. 6: Схема потоков компрессора с системой рекуперации энергии

3.1.1 Перепускной клапан теплообменника (ЕR-устройства) с рукояткой

Номера позиций - см. Рис. 1, 2, 3 и 6.

Первый перепускной клапан (7) отвечает за закрытие перепускной линии и открытие линии подачи масла от *теплообменника* (8) ER-устройства на нижней границе своего температурного диапазона. На верхней границе температурного диапазона перепускная линия полностью закрывается, и все масло течет через теплообменник ER. В таблице ниже указано, какой термостат установлен в перепускном клапане ER-устройства.

Варианты	Термостат в перепускном клапане ER-устройства
Компрессоры с постоянной скоростью вращения: 7,5; 8; 10 бар/ 100,125,150 фунтов/дюйм ²	40°C / 40-55°C ¹
Компрессоры с постоянной скоростью вращения и с ЧРП: 13 бар/ 175 фунтов/дюйм²	60°C / 60-75°C

Первый перепускной клапан ER-устройства (7) оборудован специальной рукояткой (24) для управления системой рекуперации энергии.

Как показано на *этикетке ER (Puc.7)*, ER-устройство встроено в масляный контур и рекуперирует энергию, если повернуть рукоятку по часовой стрелке.

При повороте рукоятки против часовой стрелки ERустройство перепускается в масляном контуре, рекуперация энергии отсутствует.

Внимание: разрешены только полные повороты *рукоятки (24)* по или против часовой стрелки. Промежуточные положения не допускаются!

Рис. 7: Этикетка

 $^{^1}$ 40°С/40-55°С: 40°С — маркировка термостата; 40-55°С — температурный диапазон термостата.

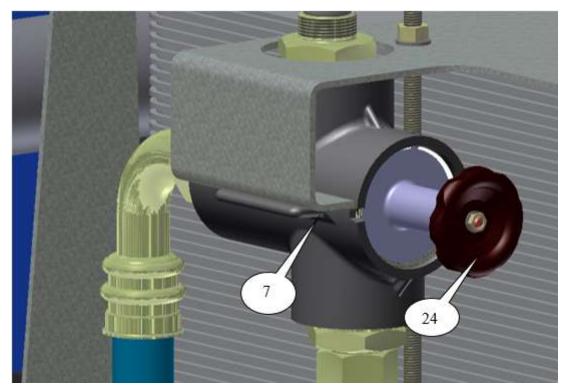


Рис. 8: Перепускной клапан ER-устройства с рукояткой (первый перепускной клапан)

3.1.2 Перепускной клапан главного охладителя масла

Второй перепускной клапан (13) закрывает перепускную линию и открывает линию подачи масла от главного охладителя масла (21) на нижней границе своего температурного диапазона. На верхней границе температурного диапазона перепускная линия полностью закрывается, и все масло течет через главный охладитель масла.

Для всех компрессоров во втором перепускном клапане корпуса масляного фильтра требуется термостат с высоким температурным диапазоном (в сравнении со стандартным термостатом), если теплота сжатия используется для рекуперации энергии. В таблице ниже указано, какой термостат установлен в перепускном клапане корпуса масляного фильтра.

Варианты	Термостат в перепускном клапане главного охладителя масла	
Компрессоры с постоянной скоростью вращения: 7,5; 8; 10 бар/ 100,125,150 фунтов/дюйм ²	75°C / 75-90°C	
Компрессоры с постоянной скоростью вращения и с ЧРП: 13 бар/ 175 фунтов/дюйм²	75°C / 75-90°C	

В дилерской версии стандартный термостат в трубе масляного фильтра (13) необходимо заменить термостатом с маркировкой «75° С», который входит в комплект поставки устройства рекуперации энергии.

3.2 Клапаны сброса давления

В обеих системах ER в водяной контур добавлен клапан сброса давления (9) с уставкой давления 10 бар.

Данный клапан предотвращает возникновение давления воды 10 бар и выше.

Расчетное давление охладителя ER – 16 бар. Если давление в водяном контуре заказчика составляет 10-16 бар, данный клапан нужно заменить клапаном сброса давления с более высокой уставкой (10-16 бар).

3.3 Система рекуперации энергии включена

Номера позиций – см. Рис. 8.

В данном случае *рукоятка (24) первого перепускного клапана (7)* ER-устройства должна быть полностью повернута **по часовой стрелке.**

Внимание: разрешены только полные повороты *рукоятки (24)*. Промежуточные положения не допускаются!

3.2.1 Запуск компрессора

Номера позиций – см. Рис. 6.

При запуске компрессора в холодном состоянии температура масла будет низкой. Первый перепускной клапан (7) ER-устройства перекрывает подачу масла от теплообменника (8), а второй перепускной клапан (13) — подачу масла от главного охладителя масла (21), чтобы защитить компрессорное масло от охлаждения. Масло течет от сепаратора (12) через масляный фильтр (22) к компрессорному элементу (23).

Вся подводимая энергия используется для быстрого нагрева компрессорного масла. Рекуперация энергии отсутствует.

3.2.2 Максимальная рекуперация энергии

Номера позиций – см. Рис. 6.

Когда температура масла достигает \sim 40°C¹, первый перепускной клапан (7) ERустройства начинает открытие линии подачи масла от температура масла поднимается до \sim 55°C², все масло проходит через теплообменник. Масло от выхода теплообменника течет через масляный фильтр (22), компрессорный элемент (23) и сепаратор (12) назад, к входу теплообменника. Второй перепускной клапан (13) осуществляет обвод главного охладителя масла (21), пока температура масла после темпообменника (8) остается ниже 75°C³.

Между компрессорным маслом и горячей оборотной водой происходит максимальный теплообмен.

3.2.3 Низкое потребление восстановленной энергии

Номера позиций - см. Рис. 6.

В данном случае температура масла, выходящего из *теплообменника* (8), может быть слишком высокой для впрыска в *компрессорный элемент* (23). Поэтому *второй перепускной клапан* (13) откроет линию подачи масла от *главного охладителя масла* (21), чтобы снизить температуру горячего масла в этом охладителе.⁴

Количество тепла, передаваемого воде, зависит от потребности в энергии.

_

 $^{^{1}}$ Температура открытия зависит от того, какая вставка находится в $1^{ом}$ перепускном клапане ER-устройства. При отправке с завода для компрессоров с постоянной скоростью вращения задана уставка 40°С для 7,5; 8 и 10 бар/ 100, 125 и 150 фунтов/дюйм². Для компрессоров с фиксированной скоростью и с ЧРП задана уставка 60°С для 13 бар и 175 фунтов/дюйм².

 $^{^2}$ Для компрессоров с постоянной скоростью вращения задана уставка 55°C для 7,5 бар, 8 бар, 10 бар, 100 фунтов/дюйм 2 , 125 фунтов/дюйм 2 и 150 фунтов/дюйм 2 . Для компрессоров с фиксированной скоростью и с ЧРП задана уставка 75°C для 13 бар и 175 фунтов/дюйм 2 .

³ При отправке с завода для всех устройств задана уставка 75° С. При необходимости данную температуру можно регулировать, установив другой термостат во $2^{\text{ой}}$ перепускной клапан (встроенный в корпус масляного фильтра). См. также сноску 4 ниже.

 $^{^4}$ Если $2^{o\tilde{u}}$ перепускной клапан (13) регулирует температуру масла, это приведет к повышению температуры впрыскиваемого в компрессорный элемент масла (75°C) и снизит рабочие параметры компрессора. Следует применить термостат для тропического климата (опция). См. также раздел 2.3.

3.2.4 Слишком высокий расход оборотной воды или слишком низкая температура входящей воды

Номера позиций – см. Рис. 6.

В этом случае температура масла, выходящего из *теплообменника* (8), может быть слишком низкой для впрыскивания в *компрессорный элемент* (23). Поэтому *первый перепускной клапан* (7) ER-устройства частично перекроет подачу масла от *теплообменника* (8), чтобы холодное масло, поступающее от теплообменника, смешивалось с горячим маслом от *сепаратора* (12).

Энергия передается от компрессорного масла к воде, но уровень температуры относительно низок.

3.3 Система рекуперации энергии выключена

В этом случае *рукоятку (24) первого перепускного клапана (7)* ER-устройства необходимо полностью повернуть **против часовой стрелки**.

Внимание: разрешены только полные повороты *рукоятки (24)*. Промежуточные положения не допускаются!

За исключением температуры открытия второго перепускного клапана (13) корпуса масляного фильтра, параметры масляной системы такие же, как и без установленного устройства рекуперации энергии.

Рекуперация энергии отсутствует.

Данную ситуацию следует рассматривать как исключительную, например, при проведении технического обслуживания водяного контура устройства рекуперации энергии, или если энергия не требуется в течение длительного периода.

3.4 Включение / выключение системы рекуперации энергии

Номера позиций – см. Рис. 6 и 8.

3.4.1 Компрессоры с постоянной скоростью вращения:

Запустите устройство без нагрузки на несколько минут, прежде чем включить/выключить устройство рекуперации энергии (поворотом *рукоятки (24)* по/против часовой стрелки).

3.4.2 Компрессоры с частотно-регулируемым приводом (ЧРП):

Закройте клапан для выпуска воздуха и запустите устройство при минимальной скорости на несколько минут, прежде чем включить/выключить устройство рекуперации энергии (поворотом *рукоятки* (24) по/против часовой стрелки).

3.5 Остановка ER-устройства на длительный период

Если используется открытая водяная система или ожидаются температуры замерзания, изолируйте водяную систему ER-устройства и продуйте ее сжатым воздухом.

4 Техническое обслуживание

4.1 Компрессорное масло

Замена масла:

- 1. Убедитесь, что *рукоятка (24)* на *корпусе перепускного клапана (7*) полностью повернута по часовой стрелке (система рекуперации энергии включена).
- 2. Включите устройство и оставьте работать до прогрева. Остановите устройство, выключите разъединитель и закройте клапан для впуска воздуха.
- 3. Сбросьте давление в компрессоре и дренируйте масло из сепаратора, открыв *дренажный клапан масла (11).* См. раздел «Замена масла и масляного фильтра» руководства пользователя к главному компрессору.
- Замените масло в соответствии с указаниями раздела «Замена масла и масляного фильтра» руководства пользователя к главному компрессору. Всегда используйте масло RXD, если установлено ER-устройство. Не используйте масло RIF.

4.2 Термостатические перепускные клапаны

При обнаружении неисправностей заменяйте вставки (термостаты) новыми. Пример: вставка заблокирована и/или повреждена, регулировочная температура выходит за пределы нормального диапазона.

4.3 Теплообменник

Номера позиций – см. Рис. 1 и 2.

Если подъем температуры в системе рекуперации энергии с течением времени снижается при неизменных рабочих условиях, необходимо проверить *теплообменник* (8). Очистите сторону масла, замочите теплообменник в обезжиривающем растворе. Для удаления накипи в водяном отсеке необходимо провести соответствующий процесс очистки. Проконсультируйтесь в отделе сервисного обслуживания.

5 Параметры устройства рекуперации энергии

5.1 Исходные условия

Температура входящего воздуха	°C	20
Абсолютное давление на входе воздуха	бар	1

5.2 Эффективное рабочее давление

- Установки	7,5 бар	бар	7
- Установки	8 бар	бар	7,5
- Установки	10 бар	бар	9,5
- Установки	13 бар	бар	12,5
- Установки	100 фунтов/дюйм ²	<u>ф</u> унт/дюйм²	100
- Установки	125 фунтов/дюйм ²	<u>ф</u> унт/дюйм²	125
- Установки	150 фунтов/дюйм ²	<u>ф</u> унт/дюйм²	150
- Установки	175 фунтов/дюйм ²	<u>ф</u> унт/дюйм²	175

5.3 Максимальное рабочее давление

Сторона масла	бар	15
Сторона воды	бар	10

5.4 Считывание уставок

Чтобы прочесть значение уставки, изучите раздел «Elektronikon» руководства пользователя к компрессору. Помимо других данных, можно прочесть следующие температуры, нажав кнопку прокрутки:

- Температура воды на входе в ER-устройство
- Температура воды на выходе из ER-устройства

5.5 Изменение уставок

Если температура воды превышает запрограммированные предупреждающие уставки, на дисплее модуля управления компрессора появляется предупреждение:

Температурный ввод	Ед-	Мин.	Номинали над уставка	Макс.	
	ЦЫ	уставка	Номинальная уставка	уставка	
Вход воды ER-устройства	°C	0	50	99	
Задержка при аварийном	С	0	Обратитесь в отдел	255	
сигнале			сервисного обслуживания	230	
Задержка при пуске должна быть меньше задержки при аварийном сигнале	С	0	Обратитесь в отдел сервисного обслуживания	255	
Выход воды ER-устройства	°C	0	Зависит от установки	99	
Задержка при сигнале	С	0	Обратитесь в отдел сервисного обслуживания	255	
Задержка при пуске должна быть меньше задержки при аварийном сигнале	С	0	Обратитесь в отдел сервисного обслуживания	255	

Для изменения уставки изучите раздел «Изменение параметров» инструкций к компрессору.

5.6 Повторно используемая энергия

Для расчета повторно используемой энергии служит формула:

ПОВТОРНО ИСПОЛЬЗУЕМАЯ ЭНЕРГИЯ (кВт) = 4,2 х расход воды (л/с) х подъем температуры воды (°C)

Максимальная повторно используемая энергия приблизительно равна 70% мощности на валу компрессора.

Если сравнить с потребляемой электроэнергией, процент будет ниже для компрессоров с воздушным охлаждением, поскольку некоторое количество электроэнергии расходует вентилятор без дальнейшей рекуперации.

У компрессоров с частотно-регулируемым приводом (ЧРП) повторно используемая энергия тоже несколько меньше, т.к. некоторое количество электроэнергии расходует привод без дальнейшей рекуперации.

5.7 Данные для систем с низким подъемом температуры/ высоким расходом воды

В таблицах ниже приведены типовые значения для вышеназванного типа водяных систем.

5.6.1 Диапазон 30- 45 кВт

Параметры	Ед-цы	30 кВт	37 кВт	45 кВт
Повторно используемая энергия	кВт	20	24,67	30
Расход воды	л/мин	28,93	35,67	43,4
Температура на входе	Ç	50	50	50
Температура на выходе	Ç	60	60	60
Перепад давления	бар	0,151	0,22	0,22

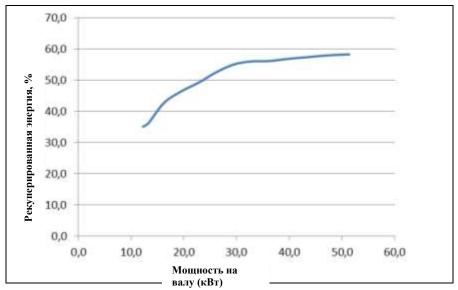


Рис.9: Устройство с ЧР11, 45 кВт — низкий подъем температуры/ высокий расход воды (±42 л/мин)

5.6.2 Диапазон 55-110 кВт

Параметры	Ед- цы	55 кВт	75 кВт	90 кВт	110 кВт
Повторно используемая энергия	кВт	48,4	66	79,2	Измерить
Расход воды	л/мин	69,3	94	113,4	Измерить
Температура на входе	°C	50	50	50	Измерить
Температура на выходе	°C	60	60	60	Измерить
Перепад давления	бар	0,206	0,46	0,527	Измерить

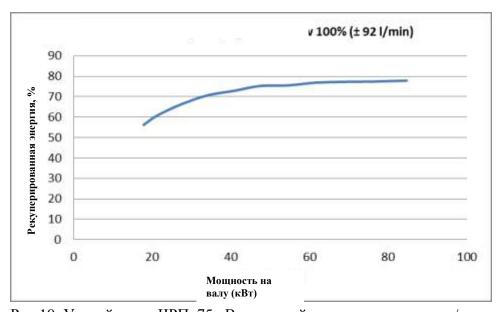


Рис.10: Устройство с ЧРП, 75 кВт — низкий подъем температуры/ высокий расход воды (± 92 л/мин)

5.7 Данные для систем с высоким подъемом температуры/ низким расходом воды ¹

В таблицах ниже приведены типовые значения для вышеназванного типа водяных систем.

5.7.1 Диапазон 30-45 кВт

Параметры	Ед- цы	30 кВт	37 кВт	45 кВт
Повторно используемая энергия	кВт	18,67	23,02	28
Расход воды	л/мин	2,28	2,79	3,4
Температура на входе	°C	20	20	20
Температура на выходе	°C	92	92	92
Перепад давления	бар	0,001	0,001	0,001

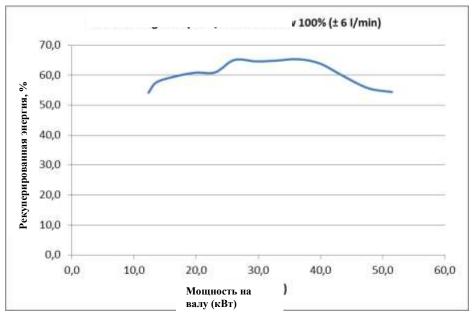


Рис.11: Устройство с ЧРП, 45 кВт — высокий подъем температуры/ низкий расход воды (± 6 л/мин)

_

 $^{^{1}}$ Помните, что системы такого типа ухудшают рабочие характеристики компрессора. Подробности – см. раздел 2.3.

5.7.2 Диапазон 55-110 кВт

Параметры	Ед- цы	55 кВт	75 кВт	90 кВт	110 кВт
Повторно используемая энергия	кВт	48,4	50,2	79,2	Измерить
Расход воды	л/мин	9,8	10,3	16,0	Измерить
Температура на входе	°C	20	20	20	Измерить
Температура на выходе	Ŝ	91	91	91	Измерить
Перепад давления	бар	0,005	0,009	0,013	Измерить

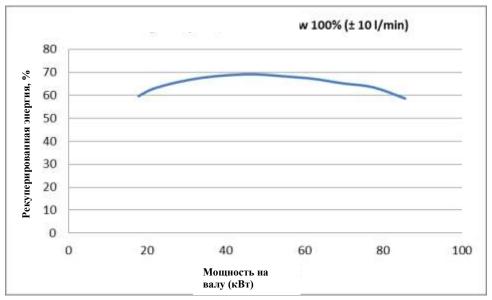


Рис.12: Устройство с ЧРП, 75 кВт — низкий подъем температуры/ высокий расход воды (± 10 л/мин)

5.8 Таблица перевода единиц СИ в единицы измерения США и Великобритании

1 бар = 14,504 фунта/дюйм 2

1 л/мин = $0,035 \ фт^3/мин$

1 кВт = 1,341 л.с.

 $x \, ^{\circ}C = (32 + 1.8x) \, ^{\circ}F$